If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2b^2+6b-21=0
a = 2; b = 6; c = -21;
Δ = b2-4ac
Δ = 62-4·2·(-21)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{51}}{2*2}=\frac{-6-2\sqrt{51}}{4} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{51}}{2*2}=\frac{-6+2\sqrt{51}}{4} $
| 7i=-21 | | 10=1-2i+7 | | a÷4=0.7 | | 5^x+1=13 | | -16=4i | | 2i-5=15 | | (a/21)=(4/3) | | 3-n4=12 | | 4^x=71 | | 2(3x+5)=5+6x | | -10=5(6+i) | | 4(x-3)=-(x-3) | | 11x−7=114$$ | | 5m-14=16 | | 18=-5i-7 | | 2h+–6=4 | | –10=q–19 | | 2(i+2)-5=3 | | 3/4=1/6+(5x)/3 | | t=20-7 | | t=20-15 | | 5s-7=48 | | 6w÷2=32-2w-19 | | (z/15)=(20/60) | | `7x=-35` | | 4(r-9)=60 | | 1.1x+15=24.9 | | 9x-9+x=4x+6 | | 3x+2=2x+3=180 | | x^2–400=0 | | 7(v+5)=38 | | 3(2m+5)=45 |